mec

WET-CHEMICAL CLEANING OF COBALT AND MOLYBDENUM FOR ADVANCED INTERCONNECTS

Q.T. LE, E. KESTERS, A. USMAN IBRAHIM*, A. KLIPP*, H. GUEVENC*,
A. PACCO, M.VAN DER VEEN, E. ALTAMIRANO SANCHEZ, AND F. HOLSTEYNS
IMEC, LEUVEN, BELGIUM
* BASF SE, LUDWIGSHAFEN, GERMANY

Email address: QuocToan.Le@imec.be

SPCC, September 1-2, 2020

Outline

- Introduction
 - Cobalt as an alternative metal to Copper
 - Co etching: commodity vs. formulated chemicals
- Co cleaning using Fotopur RD-F mixture
 - Experimental: Cleaning chemistry and objectives
 - SEM, XPS, and TEM characterization of patterned stack structure
 - Electrical evaluation
 - Summary
- Mo cleaning: choice of chemicals
 - Effect of annealing
 - Effect of H_2O_2 as oxidizer concentration (H_2O_2)
 - Summary

INTRODUCTION

COBALT: INTERCONNECT ALTERNATIVE TO COPPER

Line resistance trends for Cu vs. Co interconnects under certain assumptions

1. J. Kelly et al., and V. Kamineni et al., IEEE IITC/AMC 2016. 2. D. C. Edelstein, IEDM 2017.

- Alternative metal(s) to mitigate Cu resistance scaling impacts for lines and vias, and from size-effects
- Co: interconnect metal
 - higher bulk resistivity, but lower sizeeffects and requires ultrathin barrier
 - Co vs. Cu: resistance crossover may occur below ~15 nm CD

4

Co ETCHING: COMMODITY VS. FORMULATED CHEMICALS

- Co etch rate
 - 0.05% HF > Form. chem. with HF pre-treat > SCI 1:4:100 ~ SCI 1:4:50 ~ Form. chem.
 - In acidic medium

$$Co + H_2O \rightarrow Co(H_2O)_{ads} \rightarrow Co (OH)^+ + H^+$$

Characteristics

V
r
1 Co ²⁺ + H ₂ O 1

	Commodity	Formulation
Choice	Large	Limited choice
Co compatibility	Low	High (due to appropriate pH, additives)
Etch residue removal	Limited efficiency	Higher

More info on Co etch/HF:

- I. L. Broussous et al., UCPSS 2016.
- 2. Y. Akanishi et al., UCPSS 2018.

Co CLEANING USING FOTOPUR RD-F MIXTURE

CLEANING CHEMISTRY AND OBJECTIVES

Three main objectives:

- TiN hardmask: to be removed
- Post-etch residues: to be removed before metallization
- No metal etch & no oxidation

CLEANING CHEMISTRY

- Fotopur RD-F (BASF)
 - RD-F: $H_2O_2 = 1:1/50$ °C

TEST VEHICLES

- Blanket films (Co,TiN, OSG)
- Patterned structures

MATERIAL COMPATIBILITY AND TIN ETCH BY RD-F

Plasma-treated OSG 2.85

	Pre clean		Post clean	
	Thickness (nm)	RI @ 633 nm	Thickness (nm)	RI @ 633 nm
Mean	53.2	1.3880	53.0	1.3891
Min	50.5	1.3871	50.0	1.3883
Max	55.2	1.3886	55.0	1.3898

		<u> </u>
-(I) (

	Rs_Pre (Ohm/sq.)	Rs_Post (Ohm/sq.)
Mean	0.284	0.282
Stdv	0.021	0.012

TiN etch

Thickness-pre (nm)
Thickness-post (nm)

Thickness-post (nm)

Thickness-post (nm)

- RD-F:H₂O₂ I:I @ 50 °C/ 2 min
- Good compatibility with OSG 2.85 and ECD Co
- TiN etch: ~3 nm remained for 2 min clean
 - Artifact (SE measurement)
 - Complete TiN etch confirmed using patterned structure

ρ

TiN Thickness (nm)

PERR EFFICIENCY: X-SEM AND XPS RESULTS

- RD-F:H₂O₂ I:I @ 50 °C
 - TiN HM removed together with TiFx and CFx residues
 - No LK dielectrics etch after 4 min

.........

Atomic concentrations (At.%)

				,		
	С	0	Si	Ti	N	F
REF	26.4	27.4	8.0	8.3	6.1	23.8
0.05% HF	28.2	24.9	10.7	8.3	10.6	17.3
2min RD-F	15.9	53.5	26.1	0.1	1.1	3.3
4min RD-F	16.2	53.6	26.2	0.1	1.2	2.7
					:	ii

9

XPS CHARACTERIZATION OF PATTERNED OSG STACK

- Both TiFx residues and TiN HM were completely removed in RD-F:H₂O₂ mixture
- Small amount of fluorinated residues (detected at BE ~688 eV) still remained, which could be understood by incorporation of some residues into the OSG pores during dry dielectric etch

Co ETCH AND GALVANIC CORROSION

Some dishing already observed after CMP

Ox and IF layer OSG

- Co residue at surface removed by RD-F
- No Galvanic corrosion induced by RD-F chemistry

ELECTRICAL EVALUATION: EXPERIMENTAL

Objective: Co clean evaluation using RD-F mixture, on 22 nm HP dual damascene structure

EXPERIMENT DETAIL:

#	Co Clean	Rinse
СоІ	2 min RD-F	Aqueous alkaline + IPA rinse
Co2	2 min RD-F	Aqueous alkaline rinse
Co3	5 s dHF + 2 min RD-F	Aqueous alkaline + IPA rinse
Co4	5 s dHF + 4 min RD-F	Aqueous alkaline + IPA rinse

KELVIN VIA RESISTANCE

#	Co Clean	Rinse
Col	2 min RD-F	Aqueous alkaline + IPA rinse
Co2	2 min RD-F	Aqueous alkaline rinse
Co3	5 s dHF + 2 min RD-F	Aqueous alkaline + IPA rinse
Co4	5 s dHF + 4 min RD-F	Aqueous alkaline + IPA rinse

TD-SEM after CMP

- dHF pre-treatment (Co3 and Co4) → lower resistance but larger distribution
- Only a small difference between Col and Co2 where Col seems to be slightly better
 - The aqueous alkaline rinse followed by IPA-rinse (CoI) is better than without (Co2)

SUMMARY

- Co cleaning using Fotopur RD-F cleaning chemistry
 - Good residues removal (both TiFx and organic residues) and TiN HM etch
 - No Galvanic corrosion induced by RD-F chemistry
 - 22 nm MP structure: good electrical performance (via resistance)
 - dHF pre-treatment of 5 s: appears to have a noticeable impact on resistance (slight etching of damaged LK layer)
 - → larger resistance distribution
 - An IPA rinse is necessary to obtain lower resistance

Mo CLEANING: CHOICE OF CHEMICALS

OBJECTIVE AND EXPERIMENTAL

Objective: Mo compatibility with chemical mixtures

- Mo samples: deposited by PVD
 - Nominal thickness: 50 nm
 - As-deposited and annealed at 420 and 650 °C
 - Annealing atmospheres: FG, N₂, and H₂
- Choice of chemical mixtures
 - 0.05% HF
 - SCI mixture with variable [H₂O₂]
 - Formulated mixture, pH > 12
 - Formulated mixture, pH <2
- Characterization
 - XRD
 - 4-point probe: Rs → conversion to thickness, assuming the initial thickness is 50 nm
 - AFM: surface roughness

EFFECT OF TEMPERATURE ON Rs

- FG anneal
 - Rs increased as a function of annealing temperature; substantial increase for 650 °C anneal
- N₂ anneal: slight increase of Rs for higher temperatures within 520-650 °C range
- H₂ anneal: significant decrease of Rs for 650 °C anneal

GI-XRD

- FG anneal
 - 420 °C : no noticeable change vs. as-deposited Mo
 - 520 and 650 °C: formation of Mo nitride (*)
- N₂ and H₂ anneals: no noticeable change observed up to 650 °C

innec

EFFECT OF OXIDIZER CONCENTRATION ON Mo ETCHING

- Lower etch rate for lower concentration of the oxidizer (H_2O_2) in the mixture
- FG annealed Mo/ 650 °C: very low etching explained by the formation of Mo nitride
- Etch rate: as-depo. Mo > annealed Mo

FG ANNEALING vs. AS-DEPO Mo

- As-depo and FGA
 - 0.05% HF and semi-aqueous mixture pH > 12: no or very low etching
 - Could be used for Mo cleaning; residues removal efficiency needs to be assessed
 - Aqueous mixture pH <2:~10 nm/min etch (as-depo and FGA/ 420 °C)
- Similar trend for N₂- and H₂-annealed Mo (results not shown)

SURFACE ROUGHNESS EVALUATION (AFM)

Low etching = minor increase of roughness

SUMMARY

- Annealing: formation of Mo nitride if Mo was annealed at temperatures \geq 520 °C in forming gas, explained by a lower dissociation energy of N₂ molecule with the presence of H₂ in the mixture
- SCI: substantial etch of Mo; etch rate increased with the concentration of the oxidizer (H_2O_2) in the mixture
- 0.05% HF
 - Almost no Mo etching after 5 min
 - Could be used for PERR of Mo-containing stack, depending on (a) the stack structure (dielectrics) and (b) the plasma used for patterning
- Semi-aqueous mixture pH > 12
 - Very low ER for Mo, typical ER ≤0.5 nm/min
 - Could be used for residue removal of Mo-containing stack; residue removal efficient needs to be assessed

mec

embracing a better life

