SURFACE PREPARATION OF NIOBIUM FOR SUPERCONDUCTING QUBIT APPLICATIONS

ANTOINE PACCO

ANTOINE.PACCO@IMEC.BE

ANTON POTOCNIK, JEROEN VERJAUW, MASSIMO MONGILLO, TSVETAN IVANOV, ROHITH ACHARYA, DANNY WAN, BOGDAN GOVOREANU, IULIANA P. RADU, KURT WOSTYN, EFRAIN ALTAMIRANO SANCHEZ AND FRANK HOLSTEYNS

QUBIT DEVICE FOCUS @ IMEC SEMI- & SUPER-CONDUCTING QB'S

umec

			imec		'unec		Showstopper
Qubit Type	NMR	lon traps/ atoms	semiconductor QD	N V in diamond⁺	Superconduct. circuits	Optical qubits	Gatemon (Majorana)
Coherence/ gate time	OK 2E4		ОК ~Е7		ОК 5Е7		OK ES
2D array path	- bin-		Likely with extreme scaling		yes		maybe
Max qb #	14		2	2	21 (~2000)		(T)
Fabrication	chemistry	Maybe Si fab likely*	CMOS compatible	Random Single ion	Al/Al ₂ O ₃ /Al Si fab OK		CMOS compat Maybe
Device size	molecule	Atom but many lasers	transistor	Not clear	100s of um ²		mm ²
other	Requires very large magnets		25mK		25mK		25mK

No issue

Good enough Survivable Not clear, difficult

QUBIT COHERENCE MOORE'S LAW FOR QUANTUM COHERENCE

RESONATORS FOR DETECTION OF TLS'S POWER DEPENDENCE OF THE INTERNAL QUALITY FACTOR Q₁

 $Q_1 \rightarrow$ measure for MATERIAL and FABRICATION PROCESS QUALITY

່ເກາຍເ

QB FABRICATION PROCESSES AND SC METALS

IMEC 300 mm wafer FAB QUBIT PROCESS flow:

FAB PROCESSES have an influence on SURFACES & INTERFACES

STRONG MATERIAL & PROCESS DEPENDENCE

ເງຍອ

NIOBIUM AS SUPERCONDUCTING METAL

PRO Promising candidate for **VLSI** and high **T**_c at **9.2 K**.

CONTRA forms a **native oxide film once exposed to air** \rightarrow detrimental TLS's

EXPERIMENTAL METHOD:

CHEMICAL PROPERTIES OF NIOBIUM

- Noble? NO
- Resistant to corrosion? YES

→ EASY to clean niobium
→ DIFFICULT to have niobium in its metallic form

Asselin, E., Ahmed, T.M., and Alfantazi, A. (2007), "Corrosion of Niobium in Sulfuric and Hydrochloric Acid Solutions at 75 and 95 deg. C," *Corrosion Science*, **49**(2), pp 694-710.

CLEANING & ETCHING SOLUTIONS ETCH RATE AND SURFACE COMPOSITION AFTER ETCH

HF-based treatments etch Nb and decrease the Nb_2O_5 oxide.

 $Nb_2O_5 + 10F^{\text{-}} + 10H^{\text{+}} = 2NbF_5 + 5H_2O$

 Nb_2O_5 (V+)

NbO/ NbO₂ (II+/IV+)

Nb_{metallic}

8

ເmec

ເງຍອ

INTERNAL QUALITY FACTOR MEASUREMENTS

LE resonator

LE resonators in a 3D cavity

DEPENDENCE OF THE Q FACTOR ON RE-OXIDATION TIME

Verjauw J. et al. 300mm fab process for ultra high-quality superconducting resonators. IEDM paper, submitted.

- Q-factors increase after an HF treatment of the niobium resonators.
 - quality factors up to 7 million in the single photon regime.
 - = highest reported for niobium !
- When niobium re-oxidation takes place, the Q-factors reduce again over time.

DEPENDENCE OF THE Q FACTOR ON Nb₂O₅ THICKNESS

Verjauw J. et al. 300mm fab process for ultra high-quality superconducting resonators. IEDM paper, submitted.

 The lower limit of I/Q_L scales with the niobium oxide thickness.

→ Reduction of Nb_2O_5 thickness improves Q factor.

Nb₂O₅ is the main source of loss in the single photon limit within the first ~200h.

- An HF treatment partially removes the niobium(V) oxide.
- A decrease in Nb₂O₅ thickness has a huge effect on the quality factor of the niobium resonators:

Very high quality $Q_{s,ph} \sim 7M$ were measured for the lowest aging (re-oxidation) times.

• Losses increase again with Nb_2O_5 regrowth in time.

ACKNOWLEDGEMENTS

- Surface and Interface Processing Group:
 - Jens Rip, Kurt Wostyn, Efrain Altamirano Sanchez, Frank Holsteyns.
- Superconducting Qubit Integration Team:
 - Jeroen Verjauw, Anton Potocnik, Danny Wan, Massimo Mongillo, Tsvetan Ivanov, Laurent Souriau, Rohith Acharya, Bogdan Govoreanu, Iuliana Radu, Marc Heyns
- Materials & Component Analysis Team
 - Anja Vanleenhove, Thierry Conard, Ilse Hoflijk, Inge Vaesen

embracing a better life